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The static potentials for both open and closed bosonic membranes  are derived 
using the extended phase-space functional integral. It is shown that the BRST 
quantizat ion scheme in the case of  background gauge coincides with the ordinary 
phase-space quantization. The results for the mass of  a rectangular pointlike 
membrane  for the critical radius of  the spherical membranes  (under which appear 
tachyons) as well as for the tachyonic mass  differ by numerical  factors from 
those found using configuration-space functional  methods.  The latter is a con- 
sequence of the noncorrectness of  the configuration-space quantization for the 
membrane  theory. 

1. INTRODUCTION 

Recently Floratos (1989) and Floratos and Leontaris (1989a, b) studied 
the static potential in the framework of a nonperturbative 1/D expansion 
for both open and closed bosonic membranes moving in D-dimensional 
(D large) space-time. One obtains some information about the spectrum 
problem in the membrane theory (Townsend, 1988). A complete list of 
references is given in Townsend (1988) (see also Floratos, 1989). The papers 
of Floratos (1989) and Floratos and Leontaris (1989a) are direct generaliz- 
ation of Luscher et al. (1980), Luscher (1981), and Alvarez (1981), where 
the string's static potential is derived using the configuration-space Faddeev- 
Popov path integral quantization with Nambu-Goto Lagrangian. In the 
case of open membranes with a fixed square boundary considered in Floratos 
(1989), in contrast to the string, the tachyonic states in leading terms of 
1/D expansions are absent. The latter states arise in the case of closed 
spherical and toroidal membranes considered in Floratos and Leontaris 
(1989a, b). 
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In the present article the static potentials for both open square mem- 
branes with fixed boundary of side size R and closed spherical membranes 
are derived from the extended phase-space functional integral. It is shown 
that in the background gauge the integration over ghost variables in the 
extended phase space can be performed by means of g-functions. Con- 
sequently, the functional integral in extended phase space in the background 
gauge case coincides with that in the ordinary phase space. It can be shown 
that the latter is true for any p-branes also. In the case of strings with fixed 
ends we find the same static potential as in the paper of Alvarez (1981) 
because the Faddeev-Popov quantization for the strings is quite correct. 
This is not the case for membranes as well as for any p-branes ( p > 2 )  for 
which the constraint algebra is not Lie algebra; in that case Batalin-Fradkin- 
Vilkovisky quantization must be used (Fradkin and Vilkovisky, 1975; Hen- 
neaux, 1983, 1985). As a consequence, we have that the leading terms of 
1 / D  expansions of  our result coincide up to numerical factors with those 
in Floratos (1989) and Floratos and Leontaris (1989a). 

2. BRST Q U A N T I Z A T I O N  

We start with the Euclidean p-branes action: 

f ~  d p + l ~ / g  (2.1) S =  k 

= X ~  X ~ w h e r e g = d e t g ~ ( a , / 3 = l ,  . . . . . .  , p + l ) , g ~  ,~ , t3( /x=l ,  , D ) . X  ~,,~= 
a X " / o ~  ~, ~, = ( o 1 , . . . ,  O-p, r),  o-j ( j  = 1 , . . . ,  p)  parametrize the surface, r 
is a proper  time, k is the membrane tension, 

= [ 0 ,  T] x Sp (2.2) 

and Sp is a p-dimensional surface. 
As a consequence  of  the reparametrization invafiance o f  (2.1) we have 

the following constraints: 

49j = PX, j = 0 ( j  = 1 . . . .  , p)  

4~1 = p 2 _  k 2 d e t ( X  j X k )  (2.3) 

where 

P~ = a ~ / a x  ~ 

is the canonical conjugate momentum. 
Let us remark that ~b• is of  degree 2p with respect to X j .  Then the 

Poisson bracket has the form 

{~bz(Cr), Ol(cr')} ~ k4(Xj)2P-Eoj  

Consequently, if p > 1, the constraint algebra does not form a Lie algebra, 



Static Potentials for Bosonic Membranes 817 

which makes the Faddeev-Popov configuration space quantization non- 
correct (Henneaux, 1983, 1985). 

Now, let us start with the extended phase space functional integral for 
the membrane case (p = 2): 

f [Io Io ] Z =  ~ Q a ~ A ~ C , ~ C a  ex p -- d r ( ~ a O A + C a C a )  - dr{q*,l l}  

(2.4) 

~A = (p/x, ,/r~), Q A = ~ ; - ~ )  ( A = ~ , a )  (2.5a) 

Ca --1 --2 ca ( C : ~  
ca), \ c~ /  = (Ca ,  (a = c~, a)  (2.5b) 

)t are Lagrange multipliers, ~r are the conjugated momenta, C and C are 
ghost and their conjugated momenta, respectively, the brace indicates the 
super Poisson bracket defined in the extended phase space, and the following 
summation convention is used: FaGa=Sd2crF,  G ~. The BRST charge fl 
satisfies the nilpotency condition {12, 12} = 0 is given in Henneaux (1985) 
and Inamoto (1987). We remark that in the membrane case l) is a polynomial 
of  degree five with respect to the ghost fields. The gauge-fixing functional 
is assumed in the form 

= (C~x a - CzA a) (2.6) 

Here we consider background gauge: 
X2- ~- X ~  ~ ~  ~- 0, x I ~ x I - ~ I = 0 , . . . ,  ~ . P ~ X P - ~ P = O  (2.7) 

which is a noncovariant gauge of type III (Inamoto, 1987). The ~ give 
p~ c~ 

the solutions of  the corresponding classical equations of motion X~ = 3~ ~ . 
If  we take into account that the BRST charge has the explicit form 

(2.8) 
where 4'~ are the constraints (2.3), U are the s{ructure functions of  the 
constraint algebra, and F are the second-order structure functions (Hen- 
neaux, 1985), then the formula (2.4) takes the form 

Z = J- @P~' ~ X .  ~ a  ~ ~C'~ @C" cS(X '~ ) 

x exp - dr (PcJ~; - Aa ~h a + C~{x , 4~} C~ 

-c c -c c -c uLaac2 + lC C}{x u  }c cS 

xa,~ "~#'~,~ age,-~2 ~2 Jj (2.9) 

where 
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Here we take into account that X is independent of % ,  which gives {X, ~'} = 0, 
and consequently the integration over Ca gives 6(C2), which cancels the 
fourth-degree terms in the effective action in (2.9). Then, integration over 
C1 gives 6(C2) multiplied by det{g ~, ~b~}. Consequently, in the background 
gauge the extended phase-space functional integral (2.4) coincides with that 
in the ordinary phase space. We remark that the latter is correct for any 
p-branes also, which we consider below. 

3. PHASE-SPACE COMPUTATION OF EFFECTIVE ACTION 

Now, integrating (2.9) over the ghost fields C, we have 

Z= f ~X~P~A 6(Xts)det{dp~,Xt3}ex p- f~ dP+I((PX,,-A~b~) 
(3.1) 

which is just the functional integral in the ordinary phase space. If the 
gauge fixing X~ =x~(X)  does not depend on the momentum, we are able 
to integrate over the momentum variables. The momenta which arise in the 
det{~b~, X~} are substituted by P = -O/OX~. Then performing the integration 
over P, we find 

Z = f ~ X ~ A  (A• det{~b~, X~} 

xexp-f dP+'r (X,,-MX~)2+k:AZ det(XjXk)) 
(3.2) 

where the change of the momentum variables P ~  (A • is accomplished. 
Now, the integration over X ~ X 1 , . . . ,  X p can be performed also. For 

this purpose let us consider the following class of classical solutions: 

X c = ~ y o , o  1 _ _  �9 �9 �9 , y p + 2  = X c  D - 1  = 0 X c  _ ~ 1 ,  X P  = ~ ,  - - c  . . . .  

(3.3) 

where 9f(s r) are arbitrary functions. As was shown in Biran et al. (1987) 
(see also Zaikov, 1988, every smooth function ~ of (3.3) satisfies the classical 
equations of motion. According to Biran et al. (1987) and Zaikov (1988), 
there is a submanifold of (3.3) which satisfies the self-duality equations 
and, like the Yang-Mills theory, minimizes the action (2.1). 

We remark that in contrast to Floratos and Leontaris (1989a), we use 
such classical solutions (3.3) that allow us to retain a flat space-time metric 
for arbitrary p-branes. 
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Then, let us consider quantum fluctuations x • around the classical 
solutions (3.3): 

X~176176 X P  = ~ + x ' ( ~ : ) ,  X • = x • = ( x  p + 2 ,  . . . , x D-l) 

(3.4) 

Then, from gauge fixing (2.7), we have 

X 0 = X 1 . . . . .  X p = 0 (3.5) 

The corresponding boundary conditions are 

x• o-)]o~ = 0 (3.6a) 

for open p-branes and the periodicity conditions 

x• (3.6b) 

for closed ones. Here 0R is the boundary of ~.  
Then, after integration over X ~ (a = l , . . . , p + l )  the functional 

integral (3.2) can be rewritten in the following form: 

Z= f ~x• ~A (A• dp+II~[-~A {(~,~-AJ~,j)2 

+ (X,% --  AJx~) 2 } -I- kZA • det(x~x~ + 6)k ) ] (3.7) 

We remark that when p > 1, det(x,~xk) has degree 2p with respect to x 
and consequently if p > 1 the integral (3.7) is not Gaussian with respect 
to x. To avoid this, we introduce a new nondynamical field variable 
hjk (j, k = 1 , . . . , p ) .  

Then (3.7) takes the following form: 

Z =  I ~ x •  ~A Oh ~ p ( A •  - 0 / 2 - 1  det ~,~e exp 

+ k2A • det(hjk + ~jk) + P~k(XSX~ -- hjk)] (3.8) 

where the pjk are new Lagrange multipliers. 
Now, let us first consider the string case (p = 1). In this case the 

functional integral (3.7) itself is Gaussian. The integration over X ~ X ~ for 
an open string with fixed ends gives 

Z =  f ,@X~A (A• -D/2-1 exp-Sr (3.9) 
3 
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where 

Zaikov 

r 
Sefr= ( D - 2 )  Trln(-O~U~t3Ot3)+ JR d~'dtr tr U1 (3.10) 

Here ~ = z, ~ '  = or is inserted and the following notation is introduced: 

U, = ~ \_A,(A ,)2 + 4k2(A • / (3.11) 

In the case of "rectangular" p-branes (p > 1), in an analogous way we 
derive from (3.8) the following effective action: 

Sen = ( D - 2) Tr ln(-0~ U~0t~ ) 

Io Io So + dr dcr~ �9 �9 �9 do'p [tr u~+Ua • det hj~+pJ~(h~k-~jk)] 

(3.12) 

where we replace ~ = r, ~ '  = cry , . . . ,  ~P = %, and 

1 - a  1 

1 - a  1 (An)2+4a• 11 
vp= / : 

L - h P  - A 1 h  p 

. . . .  AP 1 . . . .  A)A p 

�9 . .  (Ap)2+4A• 

(3.13) 

Now, to derive Tr I n . . .  in (3.10) and (3.12) it is convenient to diagonal- 
ize the matrices Up of (3.11) and (3.13). One partial solution of this problem 
is to set 

)tj = 0, Pjk = 0 for j ~ k (j, k = 1 , . . . ,  p) (3.14) 

Then, introducing the expansion of A, p, and h with respect to l / D ,  i.e., 

1 ~=*+~l+O , o = p + - ~ p , + o  , 

h =  h + l h l + O ( 1 )  (3.15) 

and supposing that the leading terms of (3.10) and (3.12) possess a saddle 
point when A, p, and h do not depend on ~:, we find the following result. 

4. STATIC POTENTIALS 

Now, inserting the effective action in the formula 

V = - l im 1 Z 
T ~ o ~  T 

(4.1) 
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we find the static potential. Here we consider the following cases: 
(a) In the string case the leading term of the effective action is given by 

$efr=RT(l+k2h) ~(D-2)Tk2hl2R (4.2) 

The latter formula is found by inserting in (3.10) 

Trln(-O~AO,-O~BO~)= 7r(D-2)k(B) ' / 2 2 4 R  

as derived in Alvarez (1981). The solution of the saddle-point equation 
8S~r/63. = 0 is given by 

1 1/ -- R2~/ 1/2 q ' r (n  --2)  
+ -~ ~1 R2 / , R~ - 12k 

Then, inserting in (4.1), (4.2), we find for the static potential 

V= kR (1 R:~'/2 -R2 ] (4.3) 

which coincides with the potential derived by Alvarez (1981) from the 
configuration-space functional integral. 

(b) In the membrane case (p =2) the leading term in the effective 
action (3.12) reads 

S*~=R2T 4h kZh p2+2p -~2a(D-3)T(Ph)~/2R (4.4) 

where one has set 

P = p n  = p22, h = h 1~ = h 22 (4.5) 

and a is the ~ function related to the operator O~U~a~ [derived in Glasser 
(1973)] and the integration over h is provided. We remark that the equalities 
(4.5) are consequences of the symmetry of the rectangular membrane with 
respect to changing the space coordinates o-1~:> ~r2. From (4.4) we derive 
the following saddle point equations: 

8)t \ 4 k'-2) J q" R =0  (4.6a) 

6Ses= ) TR2(,L,+2 + =0  (4.6b) 

Using the notations 

( p ) , / 2  3x /3a (D-3)  (4.7) 
w = , y - 4kR3 
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we derive 

V(R)= kR2[w(w+-~ y) ] a/2 2 (4.8) 

where w is a root of  the following cubic equation: 

2 
w 3 - w -3- -~  y = 0 (4.9) 

We remark that we will find the same results if we do not integrate 
over the fields h, which integration is possible only in the membrane case. 
We point out also that the solutions of equation (4.9) are given in Floratos 
(1989). The difference f rom the results of  Floratos (1989) is that here the 
variable y in (4.7) coincides with x in Floratos (1989) up to the numerical 
factor 1/4. For the mass of the pointlike membrane we find from (4.8) 

~/3 1/3 
Mo = V(O)=~-~[~aZ(D-3) 2] (4.10) 

which differs from that derived in Floratos (1989) by the factor 21/3. 
(c) In the case of a spherical membrane, inserting in (3.8) the classical 

solutions (Biran et aL, 1987; Zaikov, 1988) 

~(r, o'1,0"2) 

= ([1 - q~2(cr2)] '/2 sin 0(0"0, [1 - ~b2(0"2)] '/2 cos 4'(0"1), cb(0"2)) 

0 <  r<oo ,  0_< o-1_< 2r 1--<0"2--<1 

we find the effective action for a spherical membrane. The explicit form of  
this action, which can be obtained in the same way as for the rectangular 
membrane, differs from (4.4) by the sign of  the last term and the substitution 
a ~ce / r r .  Then the corresponding static potential becomes [( , 1,2 

V(R)=kR 2 ff~ w--~y) j  (4.11) 

where 

3 ~ / 3 a ( D - 3 )  
-- 4,n.kR 3 

and t~ is the corresponding ~" function associated with the Laplace operator 
in spherical coordinates derived by Floratos and Leontaris (1989a). From 
(4.11) it follows that if R < R0, tachyonic instabilities appear [ (4.11) become 
pure imaginary], breaking the quasiclassical approximation. Here R0 is the 
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membrane  radius for which (4.11) vanishes. The corresponding tachyonic 
mass is 

= 3 ( k c e 2 ( D -  3 ) )  1/3 
M o  = 

which again coincides up to a numerical factor with that derived in Floratos 
and Leontaris (1989a). 

Finally, we remark that the disagreement of  our results with those 
derived in Floratos (1989) and Floratos and Leontaris (1989a) is a con- 
sequence of applying there the configuration-space Faddeev-Popov  quantiz- 
ation, which is incorrect for the p-branes i fp  > 1. We remark that our results 
are suitable for any p-branes and arbitrary classical solutions around which 
we consider the quantum fluctuations if we are able to compute the corre- 
sponding det in (3.8). 
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